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Abstract
Inspired by a recent work that proposes using coherent states to evaluate
the Feynman kernel in noncommutative space, we provide an independent
formulation of the path-integral approach for quantum mechanics on the Moyal
plane, with the transition amplitude defined between two coherent states of
mean position coordinates. In our approach, we invoke solely a representation
of the noncommutative algebra in terms of commutative variables. The kernel
expression for a general Hamiltonian was found to contain Gaussian-like
damping terms, and it is non-perturbative in the sense that it does not reduce
to the commutative theory in the limit of vanishing θ—the noncommutative
parameter. As an example, we studied the free particle’s propagator which
turned out to be oscillating with period being the product of its mass and θ .
Further, it satisfies the Pauli equation for a charged particle with its spin aligned
to a constant, orthogonal B field in the ordinary Landau problem, thus providing
an interesting evidence of how noncommutativity can induce spin-like effects
at the quantum mechanical level.

PACS number: 11.10.Nx

1. Introduction

When noncommutative geometry was first formally introduced by Snyder in [1], it was
presented as a possible strategy to regulate the divergences of quantum field theories. By
replacing the spacetime manifold by a noncommutative algebra represented in a Hilbert space
of states, the notion of a spacetime point becomes a cell of which size is characterized by the
noncommutative parameter θ . One can then hope to regularize the divergences in a similar
spirit as using UV cut-off on momenta integrations. However, the standard technique of using
Weyl quantization and the Groenewold–Moyal star product [2] to obtain noncommutative
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quantum field theory yields a new class of divergences known as UV/IR mixing [3]. For
example, in noncommutative φ4 theory in 4D [4], a phase factor eikiθ

ij pj , where k and p denote
momenta, is present in the perturbative diagrams. This causes many previously divergent
terms to be generally convergent due to rapid oscillation at high momenta, but in the infrared
limit p → 0, the effect of θ disappears and UV divergences are restored.

This problem currently plagues a large class of noncommutative field theories [4],
with merely a couple of surviving exceptions such as the Wess–Zumino model [5] and
supersymmetric Yang–Mills theory with 16 supercharges [6]. It is a stringy feature that comes
with using the Groenewold–Moyal star product when quantizing fields in noncommutative
spacetime. As is well known, the star product can be shown in general cases to be equivalent
to using Bopp’s shift [7], i.e. treating the noncommutative coordinates as a linear combination
of commutative coordinates and momenta such that the noncommutative algebra is preserved.

In the context of the path integration method, there have been interesting expositions of
ways of formulating it in noncommutative spacetime. In general, these methods attempt to
evaluate noncommutative analogues of the ordinary Feynman kernel:

K(x, t; x0, t0) = 〈x|Û (t, t0)|x0〉, (1.1)

where Û is the unitary time evolution operator and |x〉 ≡ |x1x2 . . . xd〉 are the position
eigenkets in d dimensions. Noncommutative geometry implies the absence of common
position eigenstates. This problem was circumvented in, for example, [8], where the
noncommutative kernels were obtained from the commutative ones by transforming phase
space coordinates via Bopp’s shift. Thus, the kernel is defined in terms of the auxiliary
commuting variables, but it is important to note that they are not physical. On the
other hand, in [9, 10], this problem is cleverly avoided by defining the kernel to
be the transition amplitude between two states with prescribed position along the first
axis of coordinates and well-defined momentum along the second axis—in other words,
doing phase space path integrals. However, one might be tempted to furnish a closer
analogue to (1.1) by defining the kernel to be the transition amplitude between states
of mean positions (since states of sharp position eigenvalues are inadmissible). Such a
formulation would be arguably more natural as it captures the fuzziness of a noncommutative
space.

Interestingly, and as the primary source of inspiration for our work here, Smailagic and
Spallucci formulated path integrals [11] by taking coherent states to define the kernel. As
was also suggested in [12], the coherent states in this context are eigenstates of complex
combinations of the position operators and as we shall discuss in detail later, they are states
of definite mean positions. Thus, they act as a meaningful set of replacement for the position
eigenstates admissible only in the commutative theory. What is notable in the approach in [11]
is that the free particle’s propagator turns out to contain a damping exponential term. This was
argued to lead to a UV finite corresponding quantum field theory [13] with divergence-less
loop diagrams—thus solving the UV/IR mixing pathology mentioned above.

We will construct a path-integral model on the noncommutative Moyal plane in this paper,
following the trick in [11] of using coherent states in defining the fundamental Feynman kernel.
However, as the reader is urged to compare our derivation process, the final expressions for
the kernel and its resulting physics will be quite different. The paper is organized as follows:
in section 2, we present our programme after outlining some fundamental principles and
explicitly work out the general expression for the noncommutative kernel; in section 3, we
evaluate the path integral for a free particle and describe some implications for its dynamics.
The paper ends with a brief discussion of possible future work. We will use naturalized units
where h̄ = c = 1.
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2. A coherent-state-based path integral

We begin with the commutator relations for the position X̂i and momentum operators
P̂i , i = 1, 2 in the Moyal plane:

[X̂i, X̂j ] = iθεij , (2.1a)

[P̂i , P̂j ] = 0, (2.1b)

[X̂i, P̂j ] = iδij , (2.1c)

where θ is the noncommutative parameter and εij is the totally antisymmetric tensor of rank 2
with ε12 = 1. In most conventional papers on noncommutative quantum mechanics (see, for
examples, [14]), in particular those concerned with phenomenology, one usually proceeds by
replacing the usual product between functions with the Groenewold–Moyal star product. This
is then equivalent to performing the well-known Bopp’s shift defined as X̃i → Xi − 1

2θεijPj ,
where the new coordinates X̃i together with the momenta generate quantum mechanics on
the usual commutative manifold. This convenient technique has been used extensively in
both quantum mechanics and quantum field theories built on noncommutative spaces [15]. In
particular, in [8], it was proposed that by relating between the Lagrangians in the commutative
and noncommutative regimes (via Bopp’s shift), one can obtain directly the noncommutative
path integral. In such a model, it was found that there was no correction to the free particle,
while other quadratic potentials like the harmonic oscillator yield kernels which reduce
continuously to the corresponding commutative cases. Another point to take note is that
field theories built on such approaches generally suffer from UV/IR divergences in their
perturbative dynamics.

In this paper, we study another approach to path integrals in noncommutative quantum
mechanics. The guiding principle of our programme is simple. First, we define quantum states
which contain information of both the noncommutative coordinates and are thus eigenstates
of a linear combination of these operators. It turns out, and as noted also in a number of
papers [12, 16], that they are none other than coherent states—very similar to those of the
harmonic oscillator yet, as we shall point out later, different in certain important aspects.
The kernel is then the transition amplitude between the initial and the final coherent states,
which has evolved in time according to Schrödinger equation. The physical meaning, as
we will also elaborate later, is that these coherent states represent states which have definite
mean position values. This contrasts interestingly with the normal approaches in literature
which actually deal with transition amplitudes between position eigenstates which are not the
physical coordinates but rather algebraic representations of the noncommutative coordinates.
Of course, the convenience in the latter approach lies in that one can control the limiting
process from the noncommutative theory to its commutative one, but as we shall observe
later, dealing directly with physically meaningful noncommutative variables can bring us new
surprises1.

As mentioned, the basic principle of our approach is not new. In [11, 13], Smailagic
and Spallucci formulated the path integral on a noncommutative plane using coherent states
which are identical to those used here. It was shown that the propagator for a free particle
exhibits UV cut-off induced by the noncommutative parameter θ , because the propagator in
momentum space was calculated to be of the form exp(−θp2/2)

p2+m2 [11], and the corresponding
quantum field theory is then UV finite with divergence-less loop diagrams.
1 This point was also raised in [17] in the context of noncommutative quantum mechanics with gauge potentials. It
was noted that the usage of star product yields gauge-dependent answers, while working directly with noncommutative
variables and the Seiberg–Witten map seemed more appropriate.



15302 H S Tan

A crucial ingredient in their derivations was that the expectation value (taken with respect
to the coherent states) of the plane wave operator exp(iP · X) was defined as the quantum
wavefunction of a free-point particle on the noncommutative plane. Herein lies the difference
between their and our approach. As will be shown later, instead of this heuristic, we invoke
solely the algebraic representations of the noncommutative phase space (2.1) to derive the
path integration. It turns out that we will obtain very distinct results.

Now, let us proceed from (2.1) by representing the algebra of (2) on L2-integrable functions
of x1, x2 via

X̂i �→ xi − θεij

2

1

i

∂

∂xj

, (2.2a)

P̂i �→ 1

i

∂

∂xi

. (2.2b)

Further, we define the operators A,A† as

A = (X̂1 + iX̂2), (2.3a)

A† = (X̂1 − iX̂2), (2.3b)

[A,A†] = 2θ. (2.3c)

If we denote |α〉 as the eigenstate of A, with A|α〉 = α|α〉, then effectively, we have coherent
states as our basis for the phase space defined in (2.1), with (2.3c) being the Heisenberg–Weyl
algebra up to a scaling factor 2θ . Properties of coherent states are well-studied (see, for
example, [18]). In the usual context of one-dimensional simple harmonic oscillators, these
coherent states minimize the Heisenberg uncertainty relation, with the real and imaginary parts
of the eigenvalues α being proportional to the mean position and momentum respectively. In
contrast, our coherent states are states of definite mean positions Xi since we have

〈α|X1|α〉 = 〈α|A + A†

2
|α〉 = Re(α)〈α|α〉 ≡ x̄1α〈α|α〉, (2.4a)

〈α|X2|α〉 = 〈α|A − A†

2i
|α〉 = Im(α)〈α|α〉 ≡ x̄2α〈α|α〉. (2.4b)

To furnish the quantity 〈x|α〉, where x is the commutative coordinate used in representation
(2.2), we have to solve the linear equation(

x1 +
θ

2

∂

∂x1
+ ix2 + i

θ

2

∂

∂x2

)
〈x|α〉 = α〈x|α〉, (2.5)

where the LHS of (2.5) is just the representation of the operator A following the prescription
in (2.2). Let 〈x|α〉 = eu+iv where u, v are real functions of x. By solving for the real and
imaginary parts of (2.5), it is straightforward to show that its general solution is, up to a
multiplicative constant,

〈x|α〉 = exp

(
−1

θ
((x1 − x̄1α)2 + (x2 − x̄2α)2) + V (−x2, x1) + iV (x1, x2)

)
, (2.6)

where V (x) is any solution to the 2D Laplace equation ∇2V (x) = 0. Consider the α = 0 case
in which we demand

lim
θ→0

〈x|0〉 = δ2(x), (2.7)

since as θ vanishes, we want to recover the commutative theory as much as possible.
Equations (2.6) and (2.7) then yield a unique renormalization constant for 〈x|0〉 as
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〈x|α = 0〉 = 1

πθ
exp

(
−1

θ

(
x1

2 + x2
2
))

, (2.8)

〈0|0〉 =
∫

|〈x|0〉|2 d2x = 1

2πθ
. (2.9)

Further, by choosing V (x) = x̄1αx2 − x1x̄2α , we have

〈x|α〉 = 1

πθ
exp

(−|α|2
4θ

)
exp

(
−1

θ

((
x1 − α

2

)2
+

(
x2 +

iα

2

)2
) )

, (2.10)

which not only ensures (2.8) but also the inner product between two coherent states to be

〈α|β〉 =
∫ ∫

〈α|x〉〈x|β〉 d2x

= 1

2πθ
exp

(
1

2θ

(
−|α|2

2
− |β|2

2
+ βα∗

) )
. (2.11)

Alternatively, following the conventional treatment of coherent state theory, we define

|α〉 = exp

(
αA† − α∗A

2θ

)
|0〉. (2.12)

Then, together with (2.9), we can invoke the standard Campbell–Baker–Hausdorff relations
to arrive at (2.11). Consider now the limit of vanishing θ . Although (2.8) offers a continuous
transition to the commutative theory, (2.10) and (2.11) become ill defined in such a procedure.
The wavefunction 〈x|α〉 is a non-perturbative solution and does not reduce smoothly to the
commutative theory although we still enjoy

lim
θ→0

|〈α|β〉| = 2δ2(xα − xβ). (2.13)

In this aspect, it is interesting to observe that in [11], the choice of V (x) = 0 in (2.6) was
effectively made, giving nicely a smooth θ → 0 limit. However, it is straightforward to show
that for such a choice, we would have, instead of (2.11)

〈α|β〉V =0 = 1

2πθ
exp

(
1

2θ
(−|α|2 − |β|2 + βα∗ + β∗α)

)
. (2.14)

We argue that it is important to prefer (2.10), in particular when we implement our path
integration later by inserting sets of immediate coherent states, because (2.10) yields∫

〈α|γ 〉〈γ |β〉 d2γ = 〈α|β〉, (2.15)

which is invalid for (2.14) even up to any multiplicative constant. Our choice of (2.10) and
thus (2.11) implies that we have

∫ |α〉〈α| d2α = 1 with respect to the subspace of coherent
states. This is a critical ingredient in carrying out the path integration as follows. Consider
an initial state at time t = t0, denoted by |α t0〉 since α labels its mean position in the 2D
noncommutative plane. We are interested in finding the transition amplitude 〈α′ t ′|α t0〉, where
|α′ t ′〉 is the state ket which has evolved in time. In our model, and as first proposed in [11],
we define the noncommutative Feynman kernel as 〈α′ t ′|α t0〉. As in the ordinary case, we first
split the time interval into N equal small slices with t ′ − t0 = Nε, and insert complete sets
of basis states

∫ |αn tn〉〈αntn| dαn at each of the grid points n = 1, 2, . . . , N − 1. Thus, the
fundamental entity of the integral is

〈α′ t ′|α t0〉 =
∫

dαN−1 · · ·
∫

dα1〈α′ t ′|αN−1 tN−1〉〈αN−1 tN−1|αN−2 tN−2〉 · · · 〈α1 t1|α t0〉,
(2.16)
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where dαn = d Re(αn) d Im(αn). As usual, if we assume that the Dyson series remains valid,
then each matrix element can be approximated to first order in ε as

〈αn+1 tn+1|αn tn〉 = 〈αn+1|1 − iεĤ (X̂, P̂ )|αn〉 + O(ε2). (2.17)

Since there is dependence of Ĥ on P̂ , we insert in a complete set of momentum eigenstates,
thus∫

dpn dp′
n〈αn+1|pn〉〈pn|1 − iεĤ (X̂, P̂ )|p′

n〉〈p′
n|αn〉

=
∫

dpn〈αn+1|pn〉〈pn|αn〉(1 − iεĤ (ᾱn, pn)) + O(ε2). (2.18)

Due to the choice of representation for P̂ being equivalent to its counterpart in the commutative
quantum theory, it is straightforward that we have the familiar 2D plane wave:

〈x|p〉 = 1

2π
exp(i(p1x1 + p2x2)). (2.19)

Using (2.10) and (2.19), we can calculate 〈α|p〉 explicitly as

〈α|p〉 =
∫

〈α|x〉〈x|p〉 dx

= 1

2π2θ
exp

(
−|α|2

4θ

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

× exp

(
ip · x − 1

θ

((
x1 − α∗

2

)2

+

(
x2 − i

α∗

2

)2
) )

= 1

2π
exp

(
−|α|2

4θ
− θ |p|2

4
+

i

2
α∗ (p1 + ip2)

))
. (2.20)

We can now evaluate (2.17) and thus the entire path integral. Substituting (2.20) into (2.18),

〈αn+1 tn+1|αn tn〉 =
∫

dpn

1

4π2
exp

(
−|αn+1|2

4θ
− θ |pn|2

2
+

i

2
αn+1

∗ (pn1 + ipn2)

)

× exp

(
−|αn|2

4θ
− i

2
αn (pn1 − ipn2)

)
× (1 − iεH(pn, ᾱn))

= 1

4π2
exp

(
−|αn+1|2 + |αn|2

4θ

) ∫
dpn(1 − iεH(pn, ᾱn))

× exp

(
−θ |pn|2

2
+

i

2
ε(pn1 − ipn2)

(
αn+1 − αn

ε

)

− 1

2
(−2 Im(αn+1)pn1 + 2 Re(αn+1)pn2)

)
. (2.21)

We now take the limit ε → 0, N → ∞ (while keeping Nε = t ′ − t0 constant) to evaluate the
kernel. Invoking the well-known representation of the exponential function

lim
N→∞

(
1 +

x

N

)N

= ex, (2.22)

and by replacing the discrete quantities by continuous ones

αn+1 − αn

ε
→ α̇(tn), ε

N−1∑
n=0

f (tn) →
∫ t ′

t0

dτ f (τ), (2.23)
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we have from (2.21):

〈α′ t ′|α t0〉 = lim
N→∞

(
1

4π2

)N ∫ N−1∏
m=1

dαm

N−1∏
n=0

dpnexp

(
i
∫ t ′

t0

dτ
1

2
(p1 − ip2)α̇ − H(p, α)

)

× exp

(
−|αn+1|2 + |αn|2 + 2θ2|pn|2

4θ
− [pn2 Re(αn+1) − pn1 Im(αn+1)]

)
. (2.24)

To make the notation more concise, we can introduce complex momentum P = 1
2 (p1 + ip2)

to write (2.24) more elegantly as

〈α′ t ′|α t0〉 ∼
∫

Dα

∫
DP exp

(
−|α|2

2θ
− 2θ |P|2 − 2[α ∧ P] + i

∫
dτ P∗α̇ − H

)
, (2.25)

which is the final form of our noncommutative kernel.

3. The free particle

In this section, we will study the propagator for the free particle moving on the noncommutative
plane starting from (2.21). We assume the Hamiltonian in this case to be

Ĥfree = P̂ 2

2m
. (3.1)

It turns out in our work that the simple form of (3.1) is actually quite deceptive because,
as we shall observe after our calculation, it implies some rather unexpected physics. After
substituting (3.1) into (2.21), we integrate over all momenta P in the entire R2 analytically,
often using the Gaussian relation:∫ ∞

−∞
dQ exp(−iε(A(Q + λ)2 − β)) =

√
π

iεA
exp(iεβ) (3.2)

to evaluate the integral∫ ∞

−∞
dpn1 dpn2

(
exp

(
−θ

2
|pn|2 +

i

2
(pn1 − ipn2)(αn+1 − αn)

+ Im(αn+1)pn1 − Re(αn+1)pn2 − iε
p2

n

2m

))

= 2mπ

mθ + iε
exp

(
αnα

∗
n+1

m

2(mθ + iε)

)
. (3.3)

The path integral is then reduced to be one involving only α integration and using (3.3) we
obtain

〈α′ t ′|α t0〉 = lim
N→∞

(
β

2πθ

)N ∫ N−1∏
i=1

d2αi exp

(
− 1

4θ
(|αi+1|2 + |αi |2 − 2βαiα

∗
i+1)

)
, (3.4)

where β ≡ 1 − iε
mθ+iε . (Note that we have still kept ε so that as N → ∞, we obtain the correct

limit for (3.4).) Now consider the product of an arbitrary series of j , j + 1, j + 2 terms in (3.4)
and define α ≡ U + iV . It can be shown after tedious algebra that for any γ εC,(

−|αj |2 + |αj+1|2
2

+ γαjα
∗
j+1

)
+

(
−|αj+1|2 + |αj+2|2

2
+ βαj+1α

∗
j+2

)

=
(
−|αj+2|2 + |αj |2

2
+ γβαjα

∗
j+2

)
−

(
Uj+1 +

β

2
Fj,j+2

)2

−
(

Vj+1 +
β

2
Gj,j+2

)2

(3.5)
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where βF = γαj +βα∗
j+2, βG = −i(γ αj −βα∗

j+2). Thus, each integration step over dαj+1 =
dUj+1 dVj+1 in (3.5) would yield a factor of π and increase the power of β by 1. This reduction
formula leads to

〈α′ t ′|α t0〉 = lim
N→∞

βN

2πθ
exp

(
− 1

4θ
(|α′|2 + |α|2 + 2βNαα′∗)

)
. (3.6)

Finally, since (2.22) implies limN→∞,ε→0 βN = exp
(−i(t ′−t0)

mθ

)
, we have the final form of the

free particle’s propagator as

〈α′ t ′|α t0〉 = 1

2πθ
exp

(−i(t ′ − t0)

mθ

)
exp

(
− 1

4θ

(
|α′|2 + |α|2 + 2 exp

(−i(t ′ − t0)

mθ

)
αα′∗

)
.

(3.7)

An immediate consistency check is to take the limit t ′ − t0 → 0 of (3.7) which recovers
comfortably (2.11)—the expected transition amplitude between two coherent states. An
interesting novel feature in (3.7) is that the propagator can be described to be spinning around
the origin, with the period characterized by mθ . We would observe later that indeed, its
effective dynamics involves angular momentum in an interesting manner. Also, as already
observed in (2.10), the wavefunction 〈x|α〉 and thus (3.7) do not have a well-defined θ → 0
limit.

To elucidate phenomenological consequences further, let us make the physical
interpretation as was decided in (2.4):

α = x̄1 + ix̄2, (3.8)

where (x̄1, x̄2) describe the mean positions of a free particle of mass m on the noncommutative
plane as measured by the observer. In the commutative theory, the free particle’s propagator is
Green’s function of the Schrodinger equation. It turns out, after some deliberate manipulation,
that our noncommutative kernel (in the coordinates x̄i) satisfies the equation[
− 1

2m
∇̄2 +

ω

2i

(
x̄2∂x̄1 − x̄1∂x̄2

)
+

mω2x̄2

8
+

ω

2
− i

∂

∂t

]
K(x̄, t; x̄0, t0) = 0, (3.9)

where ω = 1
mθ

. The Hamiltonian operator in (3.9) can be written more suggestively as

Ĥeff(x̄) = 1

2m

(
1

i

∂

∂x̄i

− qA(x̄)

)2

+
ω

2
(3.10)

A = 1

2
(Bẑ × �̄x), qB = −mω = −1/θ. (3.11)

Thus, the kernel of our path-integral model implies that, as described by its mean observed
positions, the particle is confined on the plane by a constant magnetic field B = −1/qθ in
the orthogonal direction induced by noncommutativity, with q as its charge. Also, the extra
energy term ω

2 = − qB

2m
turns out to be equivalent to the interaction energy of the spin of a

spin-1/2 particle with the magnetic field. Indeed, the effective Hamiltonian operator is just a
component of the Pauli Hamiltonian for the Landau problem in symmetric gauge [17]:

ĤPauli(x̄) = 1

2m

[ (
1

i

∂

∂x̄i

− qA(x̄)

)2

+
g

2
qBσ3

]

=
(

Ĥeff(g) 0
0 Ĥeff(−g)

)
,

(3.12)
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where �σ are the Pauli matrices and g = 2 is the gyromagnetic ratio. To recall, we have
begun with a spinless free particle on the Moyal plane; yet surprisingly, the propagator in our
framework turns out to describe physics of a charged, spin-1/2 particle confined to the plane
by a B field to which the spin is aligned.

Actually, it is not difficult to discern evidence of non-commutative geometry in the
physics of a charged particle in a magnetic field, and thus to partially understand (3.9).
Quantum mechanically (see for example, [19]), such a particle’s equation of motion follows
an ensemble of circular orbits of which centres x0, y0 obey the operator commutator

[x0, y0] = i

−qB
= i

mω
, (3.13)

where the cyclotron frequency ω bears the same definition in (3.11). Further, if the particle
has spin, the spin vector precesses about the B-field orthogonal to the plane.

On the other hand, the spin-magnetic coupling term coincides with the ground-state
energy of the 1D harmonic oscillator. Indeed, if one compares (3.7) with the coherent state
path integral for the 1D harmonic oscillator which Klauder found in [20] to be

〈α′ t ′|α t0〉= exp

(−iω(t ′ − t0)

2

)
exp

(
−1

2
(|α′|2 + |α|2 + 2 exp(−iω(t ′ − t0))αα′∗)

)
, (3.14)

it is easy to observe a striking similarity. Naively, the spin-interaction energy term ω/2 appears
to be related to the identical term in the 1D harmonic oscillator Hamiltonian. But to be careful,
not only are the Hamiltonians for (3.14) and (3.7) different, the coherent states which we have
defined here have distinct physical meanings from the standard ones used in (3.14).

This brings questions as to whether (i) higher spin interaction energy terms will fall
out naturally in higher dimensional generalization of our framework, (ii) a more complete
path integral with spin degrees of freedom will reveal spin precession in induced magnetic
fields and (iii) how conventional coherent state path integrals for harmonic oscillators are
related precisely to our model. It would be interesting to uplift our model along these stated
directions to uncover fully this surprising hint of a relationship between noncommutative
geometry and spin structures. Indeed, in this aspect, a first step was taken in [21, 22], where
the noncommutative parameter θ is tied to a local spin structure S = m2θ . In contrast, our
propagator has a spin-1/2 Pauli Hamiltonian partially emerging as the effective theory.

4. Future directions

We have constructed a path-integral model for quantum mechanics on the noncommutative
plane, and evaluated the propagator for the free particle as a simple application. The
fundamental kernel is defined as the transition amplitude between two coherent states at
different times. Interestingly, the free particle’s propagator satisfies the Pauli equation for
a charged particle with its spin aligned to a constant, orthogonal B field in the ordinary
Landau problem. This result is distinct from previously known works in noncommutative
path integration, primarily because we have taken coherent states as the starting point of our
derivation. These states are eigenvectors of the operator A as defined in (2.3), and describe
physical states of mean coordinates x1, x2. Thus, they have the closest physical meaning to
the commutative counterpart of simultaneous eigenstates of the coordinate operators. Our
solution is also non-perturbative in the sense that the propagator does not deform continuously
to the commutative theory in the vanishing θ limit. An immediate generalization of our work
would be to study the path integral for other types of interaction Hamiltonians to see how
the results differ from those presented in [8] where Bopp’s shift is used as a mapping tool to
obtain the noncommutative kernels from the commutative ones for quadratic Hamiltonians.
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In [12], noncommutative quantum mechanics has been formulated on the premise that
measurement of position operators, or functions of such operators is determined by their
expectation values between generalized coherent states [23] based on the group SO(N, 1).
This leads to N-dimensional rotation invariance. What is also interesting is that it provides
an avenue for noncommutativity on other types of spaces—including compact ones—to be
realized quantum mechanically via coherent states. For example, one may be able to analyse
the quantum mechanics of the noncommutative fuzzy sphere via generalized coherent states
of SU(2) following [12]. Thus, a possible further extension of our work would be to perform
coherent-state-based path integration in higher dimensions and on certain topologies, for
example, on hyperspheres and compare results with the commutative versions.

Our approach has been inspired by [11] in which the path integral was also formulated
on the Moyal plane using coherent states. But as mentioned earlier, our derivation has been
very much different and so are the results. For the model in [11, 13], it was argued that it
leads to UV finite quantum field theories due to the presence of Gaussian factors in the kernel
providing exponential cut-off for large momenta. It would be interesting to check similarly
if we can enjoy a divergence-free quantum field theory via our approach and thus avoid the
problem of UV/IR mixing2. Indeed, if we follow the spirit of argument in [11], it is likely
that we would be able to achieve likewise due to the Gaussian terms in (2.25) and (3.7). This
may imply that a subtle redefinition of the Feynman kernel yields noncommutative quantum
field theories without the need for renormalization.

Finally, as mentioned in section 3, it would be interesting to generalize our framework to
construct path integrals with spin degrees of freedom; in order to clarify and expand on the
hint we have found here for possible linkages between noncommutative geometry and spin
structures in quantum theory.
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